

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

956303601

CO-ORDINATED SCIENCES

0654/31

Paper 3 Theory (Core)

May/June 2020

2 hours

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 120.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

This document has 32 pages. Blank pages are indicated.

DC (ST/JG) 203212/3 **R** © UCLES 2020

[Turn over

1 (a) Fig. 1.1 is a diagram of the human female reproductive system.

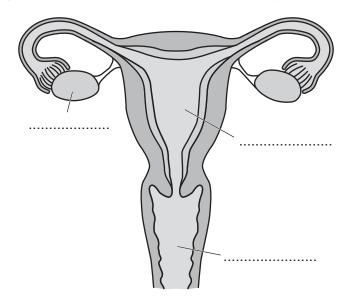


Fig. 1.1

(i) Label Fig. 1.1 using words from the list.

Each word may be used once, more than once or not at all.

cervix		ovary	oviduct			
	uterus		vagina			[3]

(ii) The boxes on the left are parts of the human female reproductive system.

The boxes on the right are the functions of the different parts.

Draw one line from each part to its function.

part	function
ovary	site of fertilisation
oviduct	receives penis during sexual intercourse
uterus	releases female gametes
vagina	where fetus develops

[3]

(b) HIV is a sexually transmitted disease often spread through unprotected sexual intercourse.

Fig. 1.2 is a graph showing the number of new infections of HIV in a country between 1999 and 2009.

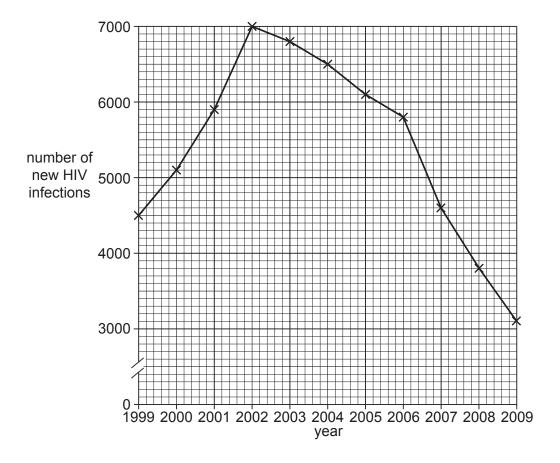


Fig. 1.2

(i)	Calculate the overall change in the number of new HIV infections between 1999 and 2009.
	[1
(ii)	Describe the trends in new HIV infections between 1999 and 2009.
	Use data to support your answer.
	[2

(c) Table 1.1 shows methods of how HIV can be transmitted or controlled.

Complete Table 1.1 to identify if the method is an example of **transmission** or **control**.

Table 1.1

method	transmission or control
barrier contraception	
contaminated blood transfusion	
sharing needles when taking drugs	

[2]

[Total: 11]

2 (a) The diagram in Fig. 2.1 shows part of the water cycle.

Clouds form above the sea and rain falls from the clouds.

Clouds are made up of very small drops of liquid water.

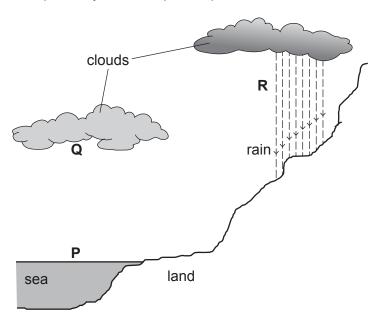


Fig. 2.1

The letters **P**, **Q** and **R** show locations where **physical** changes happen in the water cycle.

(i) Use the letters P, Q and R to complete Table 2.1.

Each letter may be used once, more than once or not at all.

Table 2.1

description of change	location
water vapour condenses	
liquid water gains kinetic energy	
water molecules move closer together	
water evaporates	

К	31

(ii) Explain why the changes P, Q and R are physical changes.

(b) Carbon dioxide in the air dissolves in rainwater. This causes the rainwater to beco acidic.				nwater to become slig	htly				
	(i)	Water is ne	utra	I.					
		State the pl	H va	lue of water.					
									[1]
	(ii)	Suggest a p	oH v	alue of rainwater.					
									[1]
(c)	Tab	acid	+ son	base	\rightarrow		+	an acid and a base.	[1]
				Та	ble 2	2.2			
				oxide		acidic or basic			
				carbon dioxide		acidic			
				chlorine oxide		acidic			
				magnesium oxide)	basic			
				phosphorus oxide)	acidic			
				sodium oxide		basic			

(i) Predict whether nitrogen dioxide is acidic or basic.

Explain your answer.

nitrogen dioxide is

explanation

[1]

(ii)	Nitrogen dioxide is an air pollutant.	
	Describe one human activity that releases nitrogen dioxide into the air.	
(iii)	Identify one other gaseous air pollutant that is harmful to humans.	[']
		[1]
	[Tot	:al: 10]

3 (a) Fig. 3.1 shows a skier at the top of a slope.



Fig. 3.1

(i) The skier travels 310.5 m in 20 s.

Calculate the average speed of the skier.

average speed = m/s [2]

(ii) Fig. 3.2 shows a speed-time graph of the skier.

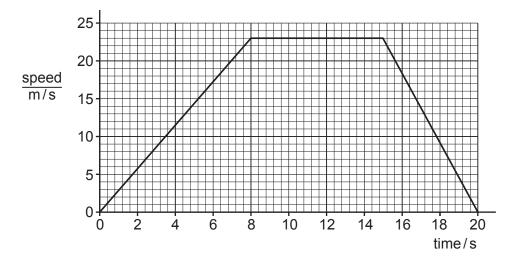


Fig. 3.2

Use Fig. 3.2 to determine the distance travelled while the skier has constant acceleration during the first 8 seconds.

			distance = m [2]
((iii)	State the name of the force that	impedes the skier's motion.
			[1]
(b)	(i)	The skier has a mass of 85 kg.	
		The gravitational field strength	g is 10 N/kg.
		Calculate the weight of the skie	:
			weight = N [2]
	(ii)	State the source of the gravita slope.	weight = N [2] tional field that causes the skier to accelerate down a
	(ii)	slope.	
	(ii)	slope.	tional field that causes the skier to accelerate down a
		slope.	tional field that causes the skier to accelerate down a
		When the skier goes to the top As he climbs, his gravitational p	tional field that causes the skier to accelerate down a
		When the skier goes to the top As he climbs, his gravitational p	tional field that causes the skier to accelerate down a
		when the skier goes to the top As he climbs, his gravitational p Choose from the list the correct created gained	tional field that causes the skier to accelerate down a field that causes the skier that cau

[Total: 9]

4 A student investigates photosynthesis using an aquatic plant (Elodea).

Fig. 4.1 shows the apparatus the student uses.

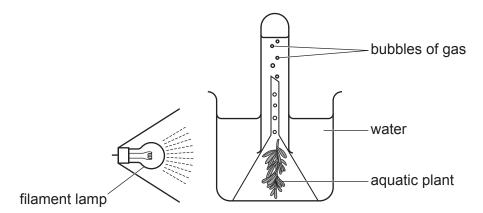


Fig. 4.1

(a)	(i)	The aquatic plant releases bubbles of gas.
		Name the gas the bubbles are made from.
		[1]
	(ii)	The investigation was repeated with the filament lamp removed.
		Explain why the number of bubbles produced decreases.
		[1]
(b)	Pho	tosynthesis is an enzyme-controlled reaction.
	(i)	Define the term <i>enzyme</i> .
		[2]
	(ii)	Suggest why placing a hot filament lamp too close to the water could stop the plant producing bubbles.
		ray.

(c) Fig. 4.2 is a photomicrograph of the cells in an Elodea leaf.

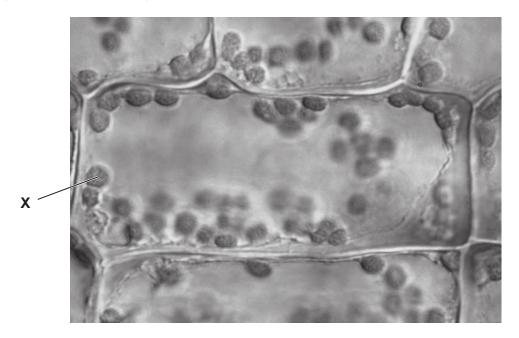


Fig. 4.2

) Identify the part of the cell labelled X in Fig. 4.2.
[1]
Name three parts of a cell found in both plant cells and animal cells.
1
2
3
[3]
Suggest two ways the structure of root hair cells would differ from the cells shown in Fig. 4.2.
[2]
) State one function of root hair cells.
[1]
[Total: 12]

(b) F	ig.	5.1 shows the chemical symbols of five non-metallic elements.
		C <i>l</i> Ar N
		P S
		Fig. 5.1
(i	•	One of the symbols in Fig. 5.1 is not in the same period of the Periodic Table as others.
		Identify the symbol and explain your answer.
		symbol
		explanation
(ii	i)	Select two elements from Fig. 5.1 that are contained in fertilisers.
`	,	and
(iii	i)	State one reason why fertiliser is added to soil.
•	,	
(c) S	Sele	ct one element from Fig. 5.1 that is used to treat water to make it safe to drink.
Е	xpl	ain how it does this.
е	lem	nent
е	xpla	anation

(d) Fig. 5.2 shows the electronic structures of atoms of argon, chlorine and potassium.

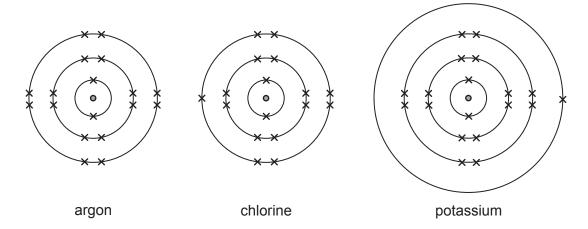


Fig. 5.2

(ii) Argon does not react with potassium.

Explain why.

Use ideas about electronic structures in your answer.

[2]

(iii) Potassium reacts with chlorine to form potassium chloride.

Describe how the electronic structures of a potassium atom and of a chlorine atom change when potassium and chlorine react.

change in potassium

change in chlorine

[2]

(iii) Name the type of chemical bonding in potassium chloride.

[1]

6	(a)	Solar cells can be used to generate electricity for a house.	
		State one advantage and one disadvantage, apart from cost, of solar cells.	
		advantage	
		disadvantage	
			[2]

(b) Fig. 6.1 shows an ice cube and a thermometer in a glass of water.

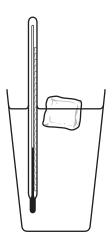


Fig. 6.1

(i) The water provides thermal energy which melts the ice.

State what happens to the temperature of the ice as it is melting.

(ii) Fig. 6.2 shows that more ice cubes have been added to the glass of water.

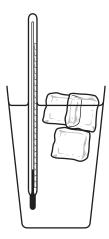


Fig. 6.2

The ice cubes reduce the temperature of the water. The scale on the liquid-in-glass thermometer shows this decrease in temperature.

[Total: 7]

7 (a) A teacher measured the height of the students in a class to the nearest cm.

Table 7.1 shows the results.

Table 7.1

height range/cm	frequency in class
140–145	2
146–150	6
151–155	8
156–160	12
161–165	5
166–170	2
171–175	1

	(i)	State the mo	st common h	neight range in	the class.		
							cm [1]
	(ii)	-		n shown by hei			
							[1]
	(iii)	State the evi	dence from T	Table 7.1 that s	upports your a	nswer in (a)(ii).	
							[1]
(b)	مءا ا	anda fuana ti					
(D)	030	words from u	he list to com	nplete the sent	ences about na	itural selection.	
(D)					ences about na		
(D)	Eac			, more than or			die
(6)	Eac	h word may b	e used once	, more than or	ce or not at all.		die
(6)	Eac	h word may b alleles re	e used once cell	, more than or	ce or not at all.	n	die
(6)	Eac	h word may b alleles re viduals in a po	e used once cell eact opulation pro	, more than or Is survive duce offspring	ce or not at all.	n variety	die
(6)	Eac	h word may b alleles re viduals in a po	e used once cell eact opulation pro	, more than or Is survive duce offspring ces for all the	ce or not at all. competition	n variety	die
(6)	Indi ^o	h word may b alleles re viduals in a po	e used once cell eact opulation pro- nough resour	, more than or Is survive duce offspring ces for all the	ce or not at all. competition ndividuals ther	n variety	
(6)	Indi	th word may b alleles re viduals in a po ere are not ere viduals that ar	e used once cell ract opulation pro- nough resour-	survive duce offspring ces for all the pted to the en	ce or not at all. competition ndividuals ther	n variety e is increased	
(6)	Indir If th Indir	h word may b alleles re viduals in a po ere are not er viduals that ar viduals that ar	e used once cell eact opulation pro- nough resour re better adapte	survive duce offspring ces for all the pted to the en	ce or not at all. competition ndividuals ther	n variety e is increased	

(c)	Lack of resources can cause extinction of a species.
	Suggest two ways humans can cause extinction.
	1
	2[2]
	[Total: 9]

Cal	cium	and copper are metals.	
(a)	(i)	State two physical properties of metals.	
		1	
		2	
	/!! \		[2]
	(ii)	Copper is a transition metal. Calcium is not a transition metal.	
		State two properties of transition metals that are not properties of calcium.	
		1	
		2	
			[2]
	(iii)	Calcium and copper are added to separate amounts of water.	
		Describe the reaction, if any, for each metal.	
		calcium	
		copper	
			[2]
(b)	Cop	oper metal is produced when copper(II) oxide reacts with hydrogen gas.	
	The	e equation for this reaction is shown.	
		CuO + $H_2 \rightarrow Cu + H_2O$	
	(i)	Explain why this equation is described as balanced.	
			[1]
	(ii)	Identify which substance is reduced in this reaction.	
		Explain your answer.	
		substance	
		explanation	
			[2]

8

(c) Metals are covered with a thin layer of copper during electroplating.

Fig. 8.1 shows apparatus and materials to electroplate a metal key with copper.

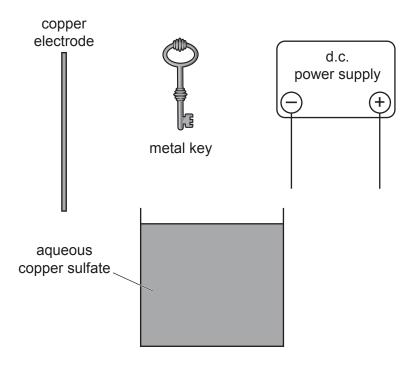


Fig. 8.1

Draw a diagram to show the apparatus and materials set up to electroplate the metal key with copper.

[2]

[Total: 11]

9 (a) Fig. 9.1 shows a thin converging lens used in a digital camera.

A ray of light has been drawn from a man's head to the image sensor.

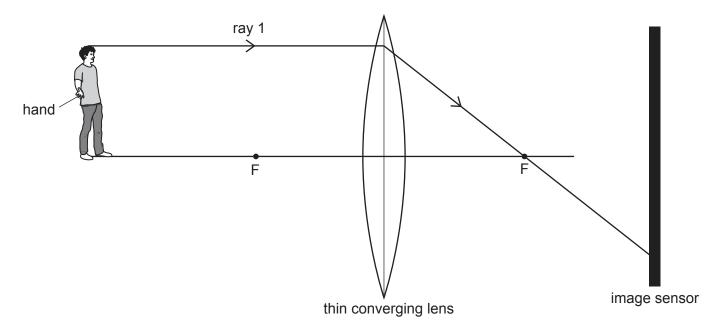


Fig. 9.1

- (i) On Fig. 9.1 draw a ray of light from the man's **hand** to show where it will be detected on the image sensor of the camera. [2]
- (ii) The image is formed on the image sensor.

Circle the **two** correct words or phrases that describe the image.

diminished enlarged inverted same size upright [2]

(iii) The camera detects visible light, and has an infrared sensor.

Write **visible light** and **infrared** in the correct positions in the electromagnetic spectrum in Fig. 9.2.

[2]

X-rays					radio waves
--------	--	--	--	--	-------------

Fig. 9.2

(b) The camera is used to photograph a thunder storm.

Thunder and lightning are caused at the same time. The photographer sees the flash of lightning before he hears the thunder.

(i)	Explain why the photographer sees the lightning before he hears the thunder.
(ii)	Explain why an astronaut orbiting the Earth in a space-station sees the lightning but does not hear the thunder.

(c)	vvn	en electronic equipment is recycled, some of the materials can be sorted using magnets.
	(i)	In a recycling factory an electromagnet is used to sort steel from other metals.
		Explain why an electromagnet is used to sort the steel.
		[2]
	(ii)	Some materials at the recycling factory were tested to see if they conducted electricity.
		Complete Table 9.1 by placing a tick (\checkmark) in the electrical conductor column or electrical insulator column to correctly describe each material.

Table 9.1

	electrical conductor	electrical insulator
aluminium		
cardboard		
copper		
polystyrene		
PVC		

[2]

[Total: 13]

BLANK PAGE

10 Fig. 10.1 is a drawing of a person doing a parachute jump.

Before the jump the person experiences a large increase in the production of the hormone adrenaline, which targets the liver and the heart.

Fig. 10.1

(a)	Describe how adrenaline is transferred to the heart and the liver.	
		•••
		[1

(b) Place ticks (\checkmark) in the boxes to show all the effects of adrenaline on the body in Table 10.1.

Table 10.1

decreased pulse rate	
increased breathing rate	
increased transpiration	
mutation of DNA	
widened pupils	

[2]

(c)	One	e other effect of adrenaline is an increased rate of respiration.	
	(i)	State the word equation for respiration.	
			[2]
	(ii)	State why respiration is needed for muscle contraction.	
			[1]
(d)	Res	spiration is one of the characteristics of living things.	
	Stat	te two other characteristics of living things.	
	1		
	2		
		l de la companya de	[2]
		[Total:	8]

Pet	roleu	m and natural gas are extracted from the Earth.	
(a)	Gas	soline is a useful product made from petroleum by fractional distillation.	
	(i)	State a use for gasoline.	
			1]
	(ii)	State one other useful product made from petroleum by fractional distillation.	
		[[1]
(b)	Cor	mpound G is the main constituent of natural gas.	
	(i)	State the name of compound G .	
			[1]
	(ii)	Fig. 11.1 is a diagram of one molecule of compound G .	
		key	
		Fig. 11.1	

On Fig. 11.1, complete the key to identify the atoms in the molecule of ${\bf G}$.

[1]

© UCLES 2020 0654/31/M/J/20

11

((c)	Alkanes	are	saturated	compounds.
		,	u . u		oon pound

Alkenes are **unsaturated** compounds.

(i)	Describe a test and its results that shows whether a compound is an alkane or an a	alkene.
	test	
	result with an alkane	
	result with an alkene	
		[2]
(ii)	Describe the difference in the covalent bonding in alkanes and in alkenes.	
		[1]
(iii)	State the name of the chemical reaction that makes alkenes from alkanes.	
		[1]
	П	otal: 8

12 (a) Fig. 12.1 shows a circuit containing a battery of 4 cells.

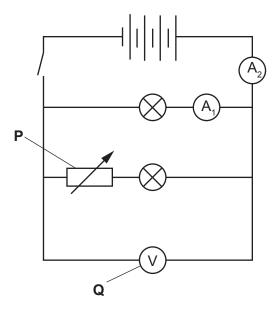


Fig. 12.1

(i)	Name the components P and Q .	
	component P	
	component Q	
(ii)	The battery is a source of electromotive force (e.m.f.).	[2]
	State the unit of e.m.f.	
	unit =	[1]
(iii)	The switch is closed and both lamps light up.	
	Readings are recorded on ammeters A ₁ and A ₂ .	
	Describe the difference, if any, in the readings of ${\rm A_1}$ and ${\rm A_2}$.	
	Explain your answer.	
	difference	
	explanation	
		 [2]

(b) Fig. 12.2 shows a mains operated d.c. power source.

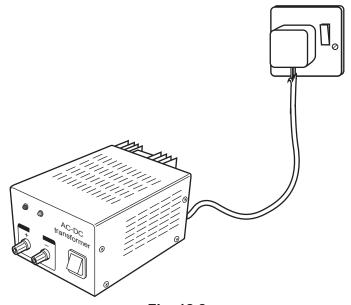


Fig. 12.2

	Identify one electrical hazard on Fig. 12.2.
	[1]
(c)	Argon gas is used in some types of lamp.
	An argon atom has the chemical symbol $^{40}_{18}$ Ar.
	State the composition of the nucleus of an atom of Argon.

(d)	A sa	imple of radioactive rock was tested to see if it emitted $lpha$ -particles.
	(i)	Describe how a radiation detector could be used to show that $\alpha\text{-particles}$ were being emitted.
		[2]
	(ii)	When the sample of radioactive rock is removed from the detector, the detector continues to record some radiation.
		Explain this observation.
		[1]

[Total: 11]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

The Periodic Table of Elements

	=	2	He He	helium 4	10	Ne	neon 20	18	Ar	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	R	radon -			
	I.				6	ш	luorine 19	17	Cl	chlorine 35.5	35	Ŗ	romine 80	53	Н	iodine 127	85	¥	statine			
																				9	_	rium
	>				80	0	oxyge 16	16	ഗ	sulfur 32	8	Š	selenii 79	52	Te	tellurit 128	8	<u>۾</u>	polonii	116		livermo
	>				7	Z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	<u>B</u>	bismuth 209			
	≥				9	O	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	ŁΙ	flerovium -
	=				2	В	boron 11	13	Νſ	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	lT	thallium 204			
								I			30	Zu	zinc 65	48	g	cadmium 112	80	Ρ̈́	mercury 201	112	ပ်	copernicium -
											29	ŋ	copper 64	47	Ag	silver 108	62	Au	gold 197	111	Rg	roentgenium -
dn											28	Z	nickel 59	46	Pd	palladium 106	78	പ	platinum 195	110	Ds	darmstadtium –
Group											27	ဝိ	cobalt 59	45	R	rhodium 103	77	'n	iridium 192	109	¥	meitnerium -
		-	I	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	92	SO	osmium 190	108	Hs	hassium -
					J						25	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	В	bohrium
						Ю	SS				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	>	tungsten 184	106	Sg	seaborgium -
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	g	niobium 93	73	<u>a</u>	tantalum 181	105	op O	dubnium -
					a a	ator	relat				22	j=	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	Ŗ	rutherfordium -
											21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids	
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	99	Ва	barium 137	88	Ra	radium -
	_				3	:=	lithium 7	1	Na	sodium 23	19	×	potassium 39	37	S S	rubidium 85	55	Cs	caesium 133	87	ΐ	francium -

r ₁	lutetium 175	103	۲	lawrencium	I
⁶ Y	ytterbium 173	102	N _o	nobelium	I
mL Tm	thulium 169	101	Md	mendelevium	1
₈₈ П	erbium 167	100	Fm	ferminm	-
67 Ho	holmium 165	66	Es	einsteinium	1
66 Dy	dysprosium 163	86	ŭ	californium	1
e5 Tb	terbium 159	26	Ř	berkelium	1
² Gd	gadolinium 157	96	Cm	curium	ı
e3 Eu	europium 152	92	Am	americium	_
62 Sm	samarium 150	94	Pu	plutonium	_
Pm	promethium -	93	Ν d	neptunium	_
⁰⁰ PX	neodymium 144	92	⊃	uranium	238
	praseodymium 141				231
Ce Ce	cerium 140	06	Ч	thorium	232
57 La	lanthanum 139	88	Ac	actinium	I

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).